The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.
View Article and Find Full Text PDFIntroduction: Reduced brain energy metabolism, mammalian target of rapamycin (mTOR) dysregulation, and extracellular amyloid beta (Aβ) oligomer (xcAβO) buildup are some well-known Alzheimer's disease (AD) features; how they promote neurodegeneration is poorly understood. We previously reported that xcAβOs inhibit nutrient-induced mitochondrial activity (NiMA) in cultured neurons. We now report NiMA disruption in vivo.
View Article and Find Full Text PDFRecombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS.
View Article and Find Full Text PDFProstate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality.
View Article and Find Full Text PDF