We analyze the stationary current of Bose particles across the Bose-Hubbard chain connected to a battery, focusing on the effect of interparticle interactions. It is shown that the current magnitude drastically decreases as the strength of interparticle interactions exceeds the critical value which marks the transition to quantum chaos in the Bose-Hubbard Hamiltonian. We found that this transition is well reflected in the nonequilibrium many-body density matrix of the system.
View Article and Find Full Text PDFWe analyze the classical and quantum dynamics of the driven dissipative Bose-Hubbard dimer. Under variation of the driving frequency, the classical system is shown to exhibit a bifurcation to the limit cycle, where its steady-state solution corresponds to periodic oscillation with the frequency unrelated to the driving frequency. This bifurcation is shown to lead to a peculiarity in the single-particle density matrix of the quantum system.
View Article and Find Full Text PDFIt is known that the quantum transport of noninteracting Bose particles across a tight-binding chain is ballistic in the sense that the current does not depend on the chain length. We address the question whether the transport of strongly interacting bosons can be ballistic as well. We find such a regime and show that, classically, it corresponds to the synchronized motion of local nonlinear oscillators.
View Article and Find Full Text PDFWe analyze the stationary current of bosonic carriers in the Bose-Hubbard chain of length L where the first and the last sites of the chain are attached to reservoirs of Bose particles acting as a particle source and sink, respectively. The analysis is carried out by using the pseudoclassical approach which reduces the original quantum problem to the classical problem for L coupled nonlinear oscillators. It is shown that an increase of oscillator nonlinearity (which is determined by the strength of interparticle interactions) results in a transition from the ballistic transport regime, where the stationary current is independent of the chain length, to the diffusive regime, where the current is inversely proportional to L.
View Article and Find Full Text PDF