Therapeutic plasma exchange (TPE) is a widely used treatment for numerous diseases including pregnancy-related conditions. Our prior study on 20 early-onset preeclampsia patients undergoing TPE revealed a significant extension in pregnancy duration and reduced serum levels of sFlt-1, sFlt-1/PlGF, and sEndoglin. Here, we investigated the impact of TPE on serum sB7-H4, an immunological checkpoint molecule, and placental proteins (Flt-1, Eng, B7-H4, iNOS, TNF-α) in TPE-treated early-onset preeclampsia patients (N = 12, 23 + 2-28 + 5 weeks), conventionally treated counterparts (N = 12, 23 + 5-30 weeks), and gestational age-matched controls (N = 8, 22 + 4-31 + 6 weeks).
View Article and Find Full Text PDFOmics-based measurements enable the study of biomolecules in a high-throughput fashion, leading to the characterization and quantification of biological systems. Multi-omics methods aim to incorporate several omics measurements for a more holistic approach, which is crucial for advancing our understanding of the diversity and redundancy of biological systems. Current multi-omics sample preparation methods have achieved proteomics, lipidomics, and metabolomics from individual samples; however, the bioinformatic tools currently available for interpreting data generated from these omics are limited.
View Article and Find Full Text PDFAlthough classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type.
View Article and Find Full Text PDFField-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest.
View Article and Find Full Text PDFFilamentous fungi are known to secrete biochemicals that drive the synthesis of nanoparticles (NPs) that vary in composition, size, and shape; a process deemed mycosynthesis. Following the introduction of precursor salts directly to the fungal mycelia or their exudates, mycosynthesis proceeds at ambient temperature and pressure, and near neutral pH, presenting significant energy and cost savings over traditional chemical or physical approaches. The mycosynthesis of zinc oxide (ZnO) NPs by various fungi exhibited a species dependent morphological preference for the resulting NPs, suggesting that key differences in the biochemical makeup of their individual exudates may regulate the controlled nucleation and growth of these different morphologies.
View Article and Find Full Text PDF