The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APP; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion.
View Article and Find Full Text PDFNeuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice.
View Article and Find Full Text PDFThe disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APP; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion.
View Article and Find Full Text PDFSeveral iPSC-derived three-dimensional (3D) cultures have been generated to model Alzheimer's disease (AD). While some AD-related phenotypes have been identified across these cultures, none of them could recapitulate multiple AD-related hallmarks in one model. To date, the transcriptomic features of these 3D models have not been compared with those of human AD brains.
View Article and Find Full Text PDFAstrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K is voltage dependent, but astrocyte membrane potential (V) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function.
View Article and Find Full Text PDF