We experimentally study the influence of the binding energy on nondipole effects in K-shell single-photon ionization of atoms at high photon energies. We find that for each ionization event, as expected by momentum conservation, the photon momentum is transferred almost fully to the recoiling ion. The momentum distribution of the electrons becomes asymmetrically deformed along the photon propagation direction with a mean value of 8/(5c)(E_{γ}-I_{P}) confirming an almost 100 year old prediction by Sommerfeld and Schur [Ann.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are 21-25 nucleotide long non-coding ribonucleic acids that modulate gene expression by degrading transcripts or inhibiting translation. The miRNA miR-128, originally thought to be brain-specific, was later also found in immune cells. To identify a valuable immune cell model system to modulate endogenous miR-128 amounts and to validate predicted miR-128 target mRNAs in B cells, we first investigated miR-128 expression using Northern blot analysis in several cell lines representing different stages of B cell development.
View Article and Find Full Text PDFWe have previously shown that the microRNA (miRNA) processor complex consisting of the RNAse Drosha and the DiGeorge Critical Region (DGCR) 8 protein is essential for B cell maturation. To determine whether miRNA processing is required to initiate T cell-mediated antibody responses, we deleted DGCR8 in maturing B2 cells by crossing a mouse with loxP-flanked DGCR8 alleles with a CD23-Cre mouse. As expected, non-immunized mice showed reduced numbers of mature B2 cells and IgG-secreting cells and diminished serum IgG titers.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2022
The mechanical and wear behavior of CrN/CrAlN multilayers were improved by tailoring the experimental conditions of a hybrid magnetron sputtering process based on a high-power impulse (HiPIMS) and two direct current magnetron sputtering (dcMS) power supplies. To this end, the influence of the base layer and of the combination of Cr and CrAl targets, which were switched to the dcMS and HiPIMS power supplies in different configurations, were investigated with respect to the growth of ceramic CrN/CrAlN multilayers onto commercial gas-nitrided diesel piston rings. The microstructure, grain morphology, and mechanical properties were evaluated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and instrumented nanoindentation.
View Article and Find Full Text PDFThe high-power impulse magnetron sputtering (HiPIMS) technique was applied to deposit multilayer-like (Cr, Y)N coatings on AISI 304L stainless steel, using pendular substrate oscillation and a Cr-Y target and varying the nitrogen flow rate from 10 to 50 sccm. The microstructure, mechanical and tribological properties were investigated by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, instrumented nano-hardness, and wear tests. The columnar grain structure became highly segmented and nanosized due to pendular substrate oscillation and the addition of yttrium.
View Article and Find Full Text PDF