The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients.
View Article and Find Full Text PDFThis article presents a Multimodal database consisting of 222 images of 76 people wherein 111 are OCTA images and 111 are color fundus images taken at the Natasha Eye Care and Research Institute of Pune Maharashtra, India. Nonmydriatic fundus images were acquired using a confocal SLO widefield fundus imaging Eidon machine. Nonmydriatic OCTA images were acquired using the Optovue Avanti Edition machine Initially, the clinical approach described in this article was used to obtain the retinal images.
View Article and Find Full Text PDFIndian J Med Ethics
December 2008