A growing body of evidence suggests that interactions between pollen grains and environmental pollutants, especially air pollutants, could be of critical importance with regard to the increase in allergic responses observed in the past decades. Using birch pollen grains (BPG), a major allergy source in European countries, and lead (Pb), a highly toxic metal trace element (MTE) present in urban areas, the immune response of human epithelial cells exposed to BPG or to Pb-associated BPG was compared. The cellular response after exposure either to BPG, BPG exposed to 30 mg/L of Pb (BPG-30), or BPG exposed to 60 mg/L of Pb (BPG-60) was evaluated after two time lapses (2 and 6 h) by measuring mRNA levels of four mediators, including two inflammatory (interleukin-8 and interleukin-6) and two allergic (interleukin-5 [IL-5] and interleukin-13) cytokines.
View Article and Find Full Text PDFBackground: Pollinosis is found more frequently in urban areas than in rural environments. This could be partly related to the different types of pollen exposure in these dissimilar areas. The objective of this study was to compare the distribution of pollen in these environments across an urbanization gradient.
View Article and Find Full Text PDFBackground: There is evidence of an allergy protective effect in children raised on farm. It has been assumed that microbial exposure may confer this protection. However in farm, little attention has been given to the pollen level and to concomitant microbiological exposure, and indoor pollen concentrations have never been precisely quantified.
View Article and Find Full Text PDF