Central to the pathophysiology of sickle cell disease are the vaso-occlusive events that lead to tissue damages and life-threatening complications. Lungs are particularly vulnerable to vaso-occlusion because of their specific vasculature. We developed a mouse model of hypoxia/reoxygenation lung injury closely mimicking the lung pathology of patients with sickle cell disease.
View Article and Find Full Text PDFHigh doses of recombinant human erythropoietin (rhEpo) are required for the treatment of chronic anemia. Thus, it is clear that therapy for chronic anemia would greatly benefit from an erythropoietin derivative with increased erythropoietic activity rather than the native endogenous hormone. In this report, the activity of a human Epo-Epo dimer protein, obtained by recombinant technology, is described and compared with its Epo monomer counterpart produced under identical conditions.
View Article and Find Full Text PDFObjective: A new intramuscular DNA electrotransfer method for erythropoietin (EPO) expression was evaluated in the natural mouse model of human beta-thalassemia (Hbb-thal1) in terms of its ability to reverse the anemia and improve the thalassemic features of erythrocytes.
Materials And Methods: Intramuscular injection of small amounts of a plasmid encoding mouse EPO, immediately followed by controlled electric pulses, was used.
Results: This procedure induced very high hematocrit levels in beta-thalassemic mice compared to nonelectrotransferred mice.
Erythropoiesis is positively regulated by stem cell factor, interleukin 3, and erythropoietin, which synergize to allow the production of hemoglobinized red blood cells from erythroid progenitors. In contrast, interferon gamma, tumor necrosis factor alpha, and transforming growth factor B(1), (TGF-beta(1)) are powerful inhibitors of erythropoiesis. Interferon gamma and alpha act principally by inducing apoptosis.
View Article and Find Full Text PDFWe have examined the effect of hydroxyurea (HU), clotrimazole (CLT), magnesium oxide (Mg), and combined CLT+Mg therapies on the erythrocyte characteristics and their response to chronic hypoxia in a transgenic sickle mouse (SAD) model. SAD mice were treated for 21 days with 1 of the following regimens (administered by gavage): control (n = 6), HU (200 mg/d; n = 6), CLT (80 mg/kg/d, n = 5), Mg (1,000 mg/kg/d, n = 5), and CLT+Mg (80 and 1,000 mg/kg/d, respectively, n = 6). Nine normal mice were also treated as controls (n = 3), HU (n = 3), and CLT+Mg (n = 3).
View Article and Find Full Text PDF