Thin films of the superconductor YBaCuO (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature.
View Article and Find Full Text PDFThe photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron-hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage.
View Article and Find Full Text PDFWe present the development and performance of an optically detected magnetic resonance (ODMR) spectrometer. The spectrometer represents advances over similar instruments in three areas: (i) the exciting light is a tunable laser source which covers much of the visible light range, (ii) the optical signal is analyzed with a spectrograph, (iii) the emitted light is detected in the near-infrared domain. The need to perform ODMR experiments on single-walled carbon nanotubes motivated the present development and we demonstrate the utility of the spectrometer on this material.
View Article and Find Full Text PDFStrong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp(1) hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application.
View Article and Find Full Text PDFWe studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter [Formula: see text]0.8 nm can be identified in absorption measurements.
View Article and Find Full Text PDF