Publications by authors named "P Rodriguez-Gil"

Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs.

View Article and Find Full Text PDF

Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20), high-energy emission originating from the pulsar is irradiating and may eventually destroy a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars, allowing for robust tests of the neutron star equation of state.

View Article and Find Full Text PDF

Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.

View Article and Find Full Text PDF

The accretion of hydrogen onto a white dwarf star ignites a classical nova eruption-a thermonuclear runaway in the accumulated envelope of gas, leading to luminosities up to a million times that of the Sun and a high-velocity mass ejection that produces a remnant shell (mainly consisting of insterstellar medium). Close to the upper mass limit of a white dwarf (1.4 solar masses), rapid accretion of hydrogen (about 10 solar masses per year) from a stellar companion leads to frequent eruptions on timescales of years to decades.

View Article and Find Full Text PDF

The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase.

View Article and Find Full Text PDF