This study investigated the metabolic transformation of carbofuran in seven species of mammals using LC-MS/MS and liver microsomes. The results revealed species-specific differences in metabolite formation, indicating the potential role of metabolic pathways in toxicity and risk assessment. The majority of carbofuran was metabolized through the 3-hydroxycarbofuran pathway, with the highest levels observed in dogLM and the lowest in humanLM.
View Article and Find Full Text PDFFurathiocarb is a carbamate insecticide found in marine ecosystems as well as river water and sediments. The aim of this study was to characterize species differences in the metabolism of furathiocarb in seven mammalian species (human, monkey, minipig, rat, mouse, dog, rabbit) analyzed by LC-TOF-MS/MS, in order to provide qualitative and quantitative chemical-specific data to enhance toxicological risk assessment. Furathiocarb was mainly biotransformed to carbofuran metabolic pathway (N-S) bond-cleavage.
View Article and Find Full Text PDFFurathiocarb is a carbamate insecticide detected in ecosystems. Its main metabolite carbofuran has been alluded to affect birth outcomes and disturb hormone levels in humans. The metabolism of furathiocarb in humans has not been characterized.
View Article and Find Full Text PDFThe human intestinal Caco-2 cell line has been extensively used as a model of small intestinal absorption but it lacks expression and function of cytochrome P450 enzymes, particularly CYP3A4 and CYP2C9, which are normally expressed in the intestinal epithelium. In order to increase the expression and activity of CYP isozymes in these cells, we created 2 novel Caco-2 sublines expressing chimeric constitutive androstane or pregnane X receptors and characterized these cells for their metabolic and absorption properties. In spite of elevated mRNA expression of transporters and differentiation markers, the permeation properties of the modified cell lines did not significantly differ from those of the wild-type cells.
View Article and Find Full Text PDFHuman responses to the toxicological effects of chemicals are often complicated by a substantial interindividual variability in toxicokinetics, of which metabolism is often the most important factor. Therefore, we investigated human variation and the contributions of human-CYP isoforms to in vitro metabolism of benfuracarb. The primary metabolic pathways were the initial sulfur oxidation to benfuracarb-sulfoxide and the nitrogen-sulfur bond cleavage to carbofuran (activation).
View Article and Find Full Text PDF