Exotic tephritid incursions are of high concern to Australia's biosecurity and its horticultural industries. It is vital that Australia remains ready to respond to incursions as they arise, as an incursion of tephritid fruit fly species will result in significant economic losses. In this review, we compared Australian incursion management strategies for fruit flies with global management strategies and identified possible areas where improvements could be made in an Australian context.
View Article and Find Full Text PDFBackground: Queensland fruit fly (Qfly) males exhibit accelerated sexual maturation when their diet is supplemented with raspberry ketone (RK) for 48 h following emergence, which is beneficial for sterile insect technique operation. The present study tests whether RK supplementation makes Qfly more vulnerable to starvation or desiccation.
Results: Flies were fed for 48 h with a yeast hydrolysate and sugar diet (1:3) that contained 0% RK (control), 1.
Juvenile hormone is an important regulator of sexual development in insects, and application of methoprene, a juvenile hormone analogue, together with access to a protein-rich diet, has been found to accelerate sexual maturation of several tephritid fruit fly species including Queensland fruit fly Bactrocera tryoni ('Q-fly'). Such accelerated development is a potentially valuable means to increase participation of released males in sterile insect technique programs. However, there is a risk that benefits of accelerated maturation might be countered by increased vulnerability to starvation and desiccation.
View Article and Find Full Text PDFThe sterile insect technique (SIT) is a sustainable pest management tool based on the release of millions of sterile insects that suppress reproduction in targeted populations. Success of SIT depends on survival, maturation, dispersal, and mating of released sterile insects. Laboratory and field cage studies have demonstrated that dietary supplements of methoprene and raspberry ketone (RK) promote sexual maturation of adult Queensland fruit fly, Bactrocera tryoni (Froggatt), and may hence shorten the delay between release and maturity in the field.
View Article and Find Full Text PDFInsects tend to live within well-defined habitats, and at smaller scales can have distinct microhabitat preferences. These preferences are important, but often overlooked, in applications of the sterile insect technique. Different microhabitat preferences of sterile and wild insects may reflect differences in environmental tolerance and may lead to spatial separation in the field, both of which may reduce the control program efficiency.
View Article and Find Full Text PDF