Dipole toroidal modes appear in many fields of physics. In nuclei, such a mode was predicted more than 50 years ago, but clear experimental evidence was lacking so far. Using a combination of high-resolution inelastic scattering experiments with photons, electrons, and protons, we identify for the first time candidates for toroidal dipole excitations in the nucleus ^{58}Ni and demonstrate that transverse electron scattering form factors represent a relevant experimental observable to prove their nature.
View Article and Find Full Text PDFThe quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs. ). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides.
View Article and Find Full Text PDFCharge radii of neutron deficient ^{40}Sc and ^{41}Sc nuclei were determined using collinear laser spectroscopy. With the new data, the chain of Sc charge radii extends below the neutron magic number N=20 and shows a pronounced kink, generally taken as a signature of a shell closure, but one notably absent in the neighboring Ca, K, and Ar isotopic chains. Theoretical models that explain the trend at N=20 for the Ca isotopes cannot reproduce this puzzling behavior.
View Article and Find Full Text PDFFollowing high-intensity, normoxic exercise there is evidence to show that healthy females, on average, exhibit less fatigue of the diaphragm relative to males. In the present study, we combined hypoxia with exercise to test the hypothesis that males and females would develop a similar degree of diaphragm fatigue following cycle exercise at the same relative exercise intensity. Healthy young participants (n = 10 male; n = 10 female) with a high aerobic capacity (120% predicted) performed two time-to-exhaustion (TTE; ~85% maximum) cycle tests on separate days breathing either a normoxic or hypoxic (FiO = 0.
View Article and Find Full Text PDFThe recent experimental determination of the parity violating asymmetry A_{PV} in ^{48}Ca and ^{208}Pb at Jefferson Lab is important for our understanding on how neutrons and protons arrange themselves inside the atomic nucleus. To better understand the impact of these measurements, we present a rigorous theoretical investigation of A_{PV} in ^{48}Ca and ^{208}Pb and assess the associated uncertainties. We complement our study by inspecting the static electric dipole polarizability in these nuclei.
View Article and Find Full Text PDF