Publications by authors named "P Regreny"

Photoelectrochemical cells (PEC) are appealing devices for the production of renewable energy carriers. In this context, III-V semiconductors such as GaAs are very promising materials due to their tunable band gaps, which can be appropriately adjusted for sunlight harvesting. Because of the high cost of these semiconductors, the nanostructuring of the photoactive layer can help to improve the device efficiency as well as drastically reduce the amount of material needed.

View Article and Find Full Text PDF

The generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 μm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.

View Article and Find Full Text PDF

Ultralong GaAs nanowires were grown by molecular beam epitaxy using the vapor-liquid-solid method. In this ultralong regime we show the existence of two features concerning the growth kinetic and the structural properties. Firstly, we observed a non-classical growth mode, where the axial growth rate is attenuated.

View Article and Find Full Text PDF

Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view cross-section relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape.

View Article and Find Full Text PDF

The accurate control of the crystal phase in III-V semiconductor nanowires (NWs) is an important milestone for device applications. Although cubic zinc-blende (ZB) GaAs is a well-established material in microelectronics, the controlled growth of hexagonal wurtzite (WZ) GaAs has thus far not been achieved successfully. Specifically, the prospect of growing defect-free and gold catalyst-free wurtzite GaAs would pave the way towards integration on silicon substrate and new device applications.

View Article and Find Full Text PDF