We experimentally demonstrate ultrafast electron diffraction from transiently aligned molecules in the absence of external (aligning) fields. A sample of aligned molecules is generated through photodissociation with femtosecond laser pulses, and the diffraction pattern is captured by probing the sample with picosecond electron pulses shortly after dissociation-before molecular rotation causes the alignment to vanish. In our experiments the alignment decays with a time constant of 2.
View Article and Find Full Text PDFWe have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge.
View Article and Find Full Text PDF