The development of orally bioavailable PROTACs presents a significant challenge due to the inflated physicochemical properties of such heterobifunctional molecules. Molecules occupying this "beyond rule of five" space often demonstrate limited oral bioavailability due to the compounding effects of elevated molecular weight and hydrogen bond donor count (among other properties), but it is possible to achieve sufficient oral bioavailability through physicochemical optimization. Herein, we disclose the design and evaluation of a low hydrogen bond donor count (≤1 HBD) fragment screening set to aid hit generation of PROTACs intended for an oral route of delivery.
View Article and Find Full Text PDFThe structure-based design of small-molecule inhibitors targeting protein-protein interactions (PPIs) remains a huge challenge as the drug must bind typically wide and shallow protein sites. A PPI target of high interest for hematological cancer therapy is myeloid cell leukemia 1 (Mcl-1), a prosurvival guardian protein from the Bcl-2 family. Despite being previously considered undruggable, seven small-molecule Mcl-1 inhibitors have recently entered clinical trials.
View Article and Find Full Text PDFFragment based drug discovery is a critical part of the lead generation toolbox and relies heavily on a readily available, high quality fragment library. Over years of use, the AstraZeneca fragment set had become partially depleted and instances of compound deterioration had been found. It was recognised that a redevelopment was required.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is a widely used method to study ligand-protein interactions. The throughput and sensitivity of SPR has made it an important technology for measuring low-affinity, ultralow weight fragments (<200 Da) in the early stages of drug discovery. However, the biochemistry of membrane proteins, such as G-protein-coupled receptors (GPCRs), makes their SPR fragment screening particularly challenging, especially for native/wild-type, nonthermostabilized mutant receptors.
View Article and Find Full Text PDF