Publications by authors named "P Rangamani"

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.

View Article and Find Full Text PDF

Biological cells rely on precise spatiotemporal coordination of biochemical reactions to control their functions. Such cell signaling networks have been a common focus for mathematical models, but they remain challenging to simulate, particularly in realistic cell geometries. Here we present Spatial Modeling Algorithms for Reactions and Transport (SMART), a software package that takes in high-level user specifications about cell signaling networks and then assembles and solves the associated mathematical systems.

View Article and Find Full Text PDF

Unlabelled: Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics.

View Article and Find Full Text PDF

Axons are ultrathin membrane cables that are specialized for the conduction of action potentials. Although their diameter is variable along their length, how their morphology is determined is unclear. Here, we demonstrate that unmyelinated axons of the mouse central nervous system have nonsynaptic, nanoscopic varicosities ~200 nm in diameter repeatedly along their length interspersed with a thin cable ~60 nm in diameter like pearls-on-a-string.

View Article and Find Full Text PDF

Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability.

View Article and Find Full Text PDF