Publications by authors named "P Randi"

In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.

View Article and Find Full Text PDF

Lower limb amputation is a medical intervention which causes motor disability and may compromise quality of life. Several factors determine patients' health outcomes, including an appropriate prosthetic provision and an effective rehabilitation program, necessitating a thorough quantitative observation through different data sources. In this context, the role of interoperability becomes essential, facilitating the reuse of real-world data through the provision of structured and easily accessible databases.

View Article and Find Full Text PDF

Powered lower-limb prostheses relying on decoding motor intentions from non-invasive sensors, like electromyographic (EMG) signals, can significantly improve the quality of life of amputee subjects. However, the optimal combination of high decoding performance and minimal set-up burden is yet to be determined. Here we propose an efficient decoding approach obtaining high decoding performance by observing only a fraction of the gait duration with a limited number of recording sites.

View Article and Find Full Text PDF

Absolute cross-section values are reported from high-resolution vacuum ultraviolet (VUV) photoabsorption measurements of gas-phase formic acid (HCOOH) in the photon energy range 4.7-10.8 eV (265-115 nm), together with quantum chemical calculations to provide vertical energies and oscillator strengths.

View Article and Find Full Text PDF

Absolute grand-total cross section for electron scattering from titanium tetrachloride, TiCl, molecule was measured at electron-impact energies ranging from 0.3 to 300 eV, in the linear electron-transmission experiment. The elastic integral, differential, momentum transfer, and total ionization cross sections for TiCl molecule were also calculated for low and intermediate collisional energies at the level of various theories.

View Article and Find Full Text PDF