Histone variants are nonallelic isoforms of canonical histones, and they are deposited, in contrast to canonical histones, in a replication-independent (RI) manner. RI deposition of H3.3, a histone variant from the H3.
View Article and Find Full Text PDFThe pannier (pnr) gene of Drosophila melanogaster encodes two isoforms that belong to the family of GATA transcription factors. The isoforms share an expression domain in the wing discs where they exhibit distinct functions during regulation of the proneural achaete/scute (ac/sc) genes. We previously identified two regions in the pnr locus that drive reporter expression in transgenic lines in patterns that recapitulate the essential features of expression of the two isoforms.
View Article and Find Full Text PDFPrevious studies have shown that the pannier (pnr) gene of Drosophila encodes a GATA transcription factor which is involved in various biological processes, including heart development, dorsal closure during embryogenesis as well as neurogenesis and regulation of wingless (wg) expression during imaginal development. We demonstrate here that pnr encodes two highly related isoforms that share functional domains but are differentially expressed during development. Moreover, we describe two genomic regions of the pnr locus that drive expression of a reporter in transgenic flies in patterns that recapitulate essential features of the expression of the isoforms, suggesting that these regions encompass crucial regulatory elements.
View Article and Find Full Text PDFThe GATA factor Pannier (Pnr) activates proneural expression through binding to a remote enhancer of the achaete-scute (ac-sc) complex. Chip associates both with Pnr and with the (Ac-Sc)-Daughterless heterodimer bound to the ac-sc promoters to give a proneural complex that facilitates enhancer-promoter communication during development. Using a yeast two-hybrid screening, we have identified Toutatis (Tou), which physically interacts with both Pnr and Chip.
View Article and Find Full Text PDFThe GATA factor Pannier activates proneural achaete/scute (ac/sc) expression during development of the sensory organs of Drosophila through enhancer binding. Chip bridges Pannier with the (Ac/Sc)-Daughterless heterodimers bound to the promoter and facilitates the enhancer-promoter communication required for proneural development. We show here that this communication is regulated by Osa, which is recruited by Pannier and Chip.
View Article and Find Full Text PDF