Publications by authors named "P Ram Sukumar"

During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • * Mice with both insulin resistance (IR+/-) and ApoE deficiency (ApoE-/-) showed more atherosclerosis after a high-cholesterol diet compared to ApoE-/- controls, indicating that insulin resistance may accelerate atherosclerosis.
  • * Investigating the role of Nox2, a source of superoxide linked to diabetes-related atherosclerosis, showed that genetically inhibiting Nox2 worsened arterial wall damage, while pharmacological inhibition reduced atherosclerosis without damaging the artery.
View Article and Find Full Text PDF

How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium.

View Article and Find Full Text PDF

Visualizations of mass shooting incidents in the United States appearing in the media can influence people's beliefs and attitudes. However, different data sources each use their own definition of mass shootings, resulting in varying counts and trends of these incidents across the sources. To investigate the effects of these varying definitions on public perceptions, we conducted a crowdsourced study using data from four sources-Mother Jones, Mass Shooter Database, Everytown for Gun Safety, and The Washington Post.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability.

View Article and Find Full Text PDF