Herein, we have successfully demonstrated a nanofiller (such as multiwalled carbon nanotubes (MWCNT)) dispersed in a polymer matrix (such as polyacrylonitrile (PAN)) as an effective pore filling agent to a microporous Daramic membrane for inhibiting bromine diffusion in zinc bromine redox flow batteries. A simple protocol of the MWCNT/PAN-Daramic membrane renders a major benefit for inhibiting bromine diffusion relative to the conventional microporous membrane. As a result, the MWCNT/PAN composite Daramic membrane exhibits remarkable electrochemical performance in zinc bromine redox flow batteries at various current densities.
View Article and Find Full Text PDFWe demonstrate a simple, single-step and scalable synthesis of edge-nitrogenated graphene nanosheets (E-N-GNS) through thermal exfoliation of graphite platelet nanofibers (GPNF) in the presence of melamine. This material was characterized using different physical characterization techniques which divulges that, the edges are selectively functionalised with pyridinic and pyrrolic type nitrogens leading to the formation of E-N-GNS. Further, the electrocatalytic activity of E-N-GNS towards oxygen reduction reaction (ORR) in alkaline medium was studied using electrochemical techniques to reveal superior electrocatalytic activity of E-N-GNS towards ORR than that of GPNF, perhaps due to the incorporation of N at the edges.
View Article and Find Full Text PDFLithium-sulfur batteries (Li-S) are considered the most promising systems for next-generation energy storage devices due to their high theoretical energy density and relatively low cost. However, the practical applications of Li-S batteries are hindered by the poor electronic conductivity of sulfur and capacity degradation resulting from the shuttle effect of lithium polysulfides (LiPSs). Herein, we demonstrate use of a tin-sulfide (SnS) modified separator to facilitate the redox reaction involving LiPS intermediates and realize improved electrochemical performance in a Li-S battery.
View Article and Find Full Text PDFTo date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to Li-ion batteries. While extensive investigations have examined various transition metal oxides and chalcogenides as anode materials for NIBs, few of these have been able to utilize their high specific capacity in sodium-based systems because of their irreversibility in a charge/discharge process. Here, the mixed Sn-S nanocomposites uniformly distributed on reduced graphene oxide are prepared via a facile hydrothermal synthesis and a unique carbothermal reduction process, producing ultrafine nanoparticle with the size of 2 nm.
View Article and Find Full Text PDF