RE-UiO-66 analogues are synthesized using RE acetates as precursors for the first time. These MOFs are fully characterized and the influence of the precursor on the materials obtained is studied. Additionally, the influence of water on the yield of the syntheses and the quality of the materials is explored.
View Article and Find Full Text PDFPostsynthetic modification of metal-organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized de novo. In this work, the rare-earth (RE) cluster-based MOF Y-CU-10 with topology was modified through transmetalation using a series of RE ions, including La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal exchange higher than 70% was observed, with reproducible results.
View Article and Find Full Text PDFRare-earth (RE) analogues of UiO-66 with non-functionalised 1,4-benzenedicarboxylate linkers are synthesised for the first time, and a series of synthetic approaches is provided to troubleshoot the synthesis. RE-UiO-66 analogues are fully characterised, and demonstrate a high degree of crystallinity, high surface area and thermal stability, consistent with the UiO-66 archetype.
View Article and Find Full Text PDFCopper(II)-based electrocatalysts for water oxidation in aqueous solution have been studied previously, but photodriving these systems still remains a challenge. In this work, a bis(diimine)copper(I)-based donor-chromophore-acceptor system is synthesized and applied as the light-harvesting component of a photoanode. This molecular assembly was integrated onto a zinc oxide nanowire surface, and upon photoexcitation, chronoamperometric studies reveal that the integrated triad can inject electrons directly into the conduction band of zinc oxide, generating oxidizing equivalents that are then transferred to a copper(II) water oxidation catalyst in aqueous solution, yielding O from water with a Faradaic efficiency of 76%.
View Article and Find Full Text PDFIn the past 30 years, metal-organic frameworks (MOFs) have garnered widespread attention owing to their diverse chemical structures, and tunable properties. As a result, MOFs are of interest for a wide variety of potential applications spanning multiple scientific and engineering disciplines. MOFs have been synthesized using several elements from the periodic table, including those with metal nodes containing s-, p-, d-, and f-block elements.
View Article and Find Full Text PDF