Long-duration spaceflight poses multiple hazards to human health, including physiological changes associated with microgravity. The hemodynamic adaptations occurring upon entry into weightlessness have been associated with retrograde stagnant flow conditions and thromboembolic events in the venous vasculature but the impact of microgravity on cerebral arterial hemodynamics and function remains poorly understood. The objective of this study was to quantify the effects of microgravity on hemodynamics and wall shear stress (WSS) characteristics in 16 carotid bifurcation geometries reconstructed from ultrasonography images using computational fluid dynamics modeling.
View Article and Find Full Text PDFThe drift-diffusion model (DDM) is a model of sequential sampling with diffusion signals, where the decision maker accumulates evidence until the process hits either an upper or lower stopping boundary and then stops and chooses the alternative that corresponds to that boundary. In perceptual tasks, the drift of the process is related to which choice is objectively correct, whereas in consumption tasks, the drift is related to the relative appeal of the alternatives. The simplest version of the DDM assumes that the stopping boundaries are constant over time.
View Article and Find Full Text PDFOver a decade ago Polymerase δ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX.
View Article and Find Full Text PDFValidation of a prospective new therapeutic concept in a proof of concept study is costly and time-consuming. In particular, pharmacologically active tool compounds often lack suitable pharmacokinetic (PK) properties for subsequent studies. The current work describes a PLGA-based formulation platform, encapsulating different preclinical research compounds into extended release microparticles, to optimize their PK properties after subcutaneous administration.
View Article and Find Full Text PDF