Objective: The purpose of this study was to evaluate the mechanisms of action of optimized myofascial release (MFR) on wound healing using a 3-dimensional human tissue construct.
Methods: Bioengineered tendons were cultured on a deformable matrix, wounded using a steel cutting tip, then strained in an acyclic manner with a modeled MFR paradigm at 103% magnitude for 5 minutes. Imaging and measurements of the width and wound size were performed daily, and the average tissue width of the entire bioengineered tendon was measured, and wound size and major and minor axes of the elliptical wound were additionally measured.
A key osteopathic tenet involves the body's ability to self-heal. Osteopathic manipulative treatment (OMT) has been evolved to improve this healing capacity. The authors' in vitro work has focused on modeling 2 common OMT modalities: myofascial release (MFR) and counterstrain.
View Article and Find Full Text PDFContext: Myofascial release (MFR) is one of the most commonly used manual manipulative treatments for patients with soft tissue injury. However, a paucity of basic science evidence has been published to support any particular mechanism that may contribute to reported clinical efficacies of MFR.
Objective: To investigate the effects of duration and magnitude of MFR strain on wound healing in bioengineered tendons (BETs) in vitro.