This present work demonstrated the functional transformation of 3D printed metal substrates into a new family of Surface-enhanced Raman Scattering substrates, a promising approach in developing SERS-based Point-of-care (PoC) analytical platforms. l-Powder Bed Fusion (l-PBF, Additive manufacturing or 3D printing technique) printed metal substrates have rough surfaces, and exhibit high thermal stability and intrinsic chemical inertness, necessitating a suitable surface functionalization approach. This present work demonstrated a unique multi-stage approach to transform l-PBF printed metal structures as recyclable SERS substrates by colloidal carbon templating, chemical vapor deposition, and electroless plating methods sequentially.
View Article and Find Full Text PDFCombining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures.
View Article and Find Full Text PDFGeneration and fine-tuning of surface plasmon resonances is a prerequstite for several established and emerging applications such as photovoltaics, photocatalysis, photothermal therapy, surface-enhanced spectroscopy, sensing, superlensing and lasing. We present a low-cost and scalable lateral electrodeposition method for fabrication of high aspect ratio gold nanoring arrays that exhibit multiple surface plasmon resonances in the visible to near-infrared region. Nickel disc arrays of 2 µm size were initially fabricated using maskless lithography and e-beam evaporation.
View Article and Find Full Text PDFMajor agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 °C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOH-aqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 °C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment.
View Article and Find Full Text PDFSelective laser melting printed metal lattice structures functionalised using zeolites have been shown as a promising new generation of catalysts. The unprecedented catalytic activity can be explained by metal migration (most likely chromium) from the support into the zeolite phase making it a promising candidate for endothermic fuels for high-speed flight vehicles.
View Article and Find Full Text PDF