Publications by authors named "P R Segarini"

Connective tissue growth factor (CTGF) is a 38-kd protein involved in several human fibrotic disorders including atherosclerosis and skin and renal fibrosis. Although it has been shown that human and experimental liver fibrosis is associated with CTGF expression through up-regulation of CTGF mRNA by hepatic stellate cells (HSC), the role of CTGF in the liver has not yet been determined. The aim of the present study was to assess the effects of CTGF on rat primary HSC and its regulation in a well-established model of in vitro liver fibrogenesis.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) is a cysteine-rich heparin-binding polypeptide that promotes proliferation, collagen synthesis, and chemotaxis in mesanchymal cells. When coinjected subcutaneously with transforming growth factor beta (TGFbeta), CTGF promotes sustained fibrosis in rats. However, little is known about the cell biology and structure/functional relationship of CTGF.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) expression is regulated by transforming growth factor-beta (TGF-beta) and strong up-regulation occurs during wound healing; in situ hybridization data indicate that there are high levels of CTGF expression in fibrotic lesions. Recently the binding parameters of CTGF to both high and lower affinity cell surface binding components have been characterized. Affinity cross-linking and SDS-polyacrylamide gel electrophoresis analysis demonstrated the binding of CTGF to a cell surface protein with a mass of approximately 620 kDa.

View Article and Find Full Text PDF

Background: Transforming growth factor-beta (TGF-beta) is a causal factor in experimental glomerulosclerosis, and it mediates the increased extracellular matrix (ECM) accumulation that occurs in cultured mesangial cells (MCs) exposed to high glucose concentrations and cyclic mechanical strain. This change is associated with increased levels of TGF-beta, but may also involve alterations in receptor expression and binding.

Methods: Rat MCs cultured in media containing either 8 or 35 mM glucose were seeded into culture plates with elastin-coated flexible bottoms.

View Article and Find Full Text PDF