Paleoneurology reconstructs the evolutionary history of nervous systems through direct observations from the fossil record and comparative data from extant species. Although this approach can provide direct evidence of phylogenetic links among species, it is constrained by the availability and quality of data that can be gleaned from the fossil record. Here, we sought to translate brain component relationships in a sample of extant Carnivora to make inferences about brain structure in fossil species.
View Article and Find Full Text PDFUnderstanding patterns of cortico-cortical connections in both frequently and infrequently studied species advances our knowledge of cortical organization and evolution. The agouti (Dasyprocta aguti, a medium-size South American rodent) offers a unique opportunity, because of its large lissencephalic brain and its natural behaviors, such as gnawing and hiding seeds, that require bimanual interaction while sitting on its hindlimbs and aligning its head to receive images of the horizon on the retinal visual streak. There have been no previous studies of the intrinsic and extrinsic ipsilateral projections of the agouti's primary somatosensory cortical area (S1).
View Article and Find Full Text PDFBackground: Essential hypertension is a most prevalent global health concern. Despite extensive research, the exact mechanisms contributing to essential hypertension remain unclear. Several factors contribute to the pathogenesis of essential hypertension.
View Article and Find Full Text PDFEmploying immunohistochemical procedures with antibodies raised against tyrosine hydroxylase (TH) and choline acetyltransferase we identified and mapped the locus coeruleus complex (LoC) and the pontine laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPN) cholinergic nuclei in the brains of a Congo gray parrot, a timneh gray parrot, and a pied crow. The LoC and LDT/PPN are centrally involved in the regulation and generation of different sleep states, and as all birds studied to date show both REM and non-REM sleep states, like mammals, we investigated whether these noradrenergic and cholinergic nuclei in the avian pons shared anatomical features with those in the mammalian pons. The LoC was parcellated into 3 distinct nuclei, including the locus coeruleus (A6), subcoeruleus (A7), and the fifth arcuate nucleus (A5), while distinct LDT and PPN nuclei were revealed.
View Article and Find Full Text PDFThe cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant.
View Article and Find Full Text PDF