Publications by authors named "P R Lehr"

Adaptation of crops to recurrent drought stress is crucial for maintaining agricultural productivity and achieving food security under changing climate. Guard cells, pivotal regulators of plant water usage and assimilation, are central to this adaptation process. However, the metabolic dynamics of guard cells under drought stress remain poorly understood, particularly in grapevine, a prominent crop grown in arid regions, and maize, a staple crop with substantial water requirements.

View Article and Find Full Text PDF

Human interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1β binders that interfere with IL-1β signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening.

View Article and Find Full Text PDF

Human interleukin-1β (hIL-1β) is a pro-inflammatory cytokine involved in many diseases. While hIL-1β directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1β-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1β antagonist that blocks the interaction with the IL-1R1 receptor.

View Article and Find Full Text PDF

Training systems are an option to handle the pronounced apical dominance of grapevines and to influence diverse traits of the corresponding wine. However, it is still unclear if different training systems generate signatures in the metabolome of the wine. By an untargeted metabolomics approach using (SPME) GC-MS wine (volatiles) and leaves were evaluated.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate.

View Article and Find Full Text PDF