Publications by authors named "P R Gordon-Weeks"

Co-ordinating the dynamic behaviour of actin filaments (F-actin) and microtubules in filopodia is an important underlying process in neuritogenesis, but the molecular pathways involved are ill-defined. The drebrin/end-binding protein 3 (EB3) pathway is a candidate pathway for linking F-actin to microtubules in filopodia. Drebrin binds F-actin and, simultaneously, the microtubule-binding protein EB3 when bound to microtubule plus-ends.

View Article and Find Full Text PDF

Cancer progression is characterized by the capacity of malignant cells to exploit an innate migratory ability in order to invade adjacent tissues, enter the vasculature and eventually metastasize to secondary organs. It is this spread of cancer cells that is the major cause of death in cancer patients. Understanding the basic biology of how cancer cells generate an invasive phenotype will be crucial to the identification of drug targets with the aim of impeding tumour dissemination.

View Article and Find Full Text PDF

Neuritogenesis is an early event in neuronal development in which newborn neurons first form growth cones, as a prerequisite for the formation of axons and dendrites. Growth cones emerge from segmented regions of the lamellipodium of embryonic neurons and grow away from the cell body leaving behind a neurite that will eventually polarise into an axon or dendrite. Growth cones also function to navigate precise routes through the embryo to locate an appropriate synaptic partner.

View Article and Find Full Text PDF

Prostate cancer is the most common cancer in men and the metastatic form of the disease is incurable. We show here that the drebrin/EB3 pathway, which co-ordinates dynamic microtubule/actin filament interactions underlying cell shape changes in response to guidance cues, plays a role in prostate cancer cell invasion. Drebrin expression is restricted to basal epithelial cells in benign human prostate but is upregulated in luminal epithelial cells in foci of prostatic malignancy.

View Article and Find Full Text PDF

Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule-actomyosin crosstalk is required for a neuron's 'two-stroke' nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule-actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration.

View Article and Find Full Text PDF