Publications by authors named "P R Cruzans"

The efficiency of in vitro embryo production in mammals is influenced by variables associated with culture conditions during maturation, fertilization, and embryonic development. The embryos obtained often exhibit low quality due to suboptimal in vitro culture conditions compared to the in vivo environment. Co-culturing gametes and embryos with somatic cells has been developed to enhance in vitro culture conditions.

View Article and Find Full Text PDF

Context: In pigs, in vitro fertilisation (IVF) is associated with high polyspermy rates, and for this reason, in vitro embryo production (IVP) is still an inefficient biotechnology. Coculture with somatic cells is an alternative to improve suboptimal in vitro maturation (IVM) conditions.

Aim: This study was conducted to test a coculture system of porcine luteal cells (PLC) and cumulus-oocyte complexes (COC) to improve oocyte metabolism.

View Article and Find Full Text PDF

Context: One of the main problems of porcine in vitro maturation (IVM) is incomplete cytoplasmatic maturation. Nuclear and cytoplasmic maturation will determine the future success of fertilisation and embryo development. Insulin-transferrin-selenium (ITS) has insulin-like and antioxidant effects, and metformin (M) is an insulin-sensitiser and antioxidant drug.

View Article and Find Full Text PDF

Coculture with somatic cells is an alternative to improve suboptimal invitro culture conditions. In pigs, IVF is related to poor male pronuclear formation and high rates of polyspermy. The aim of this study was to assess the effect of a coculture system with porcine luteal cells (PLCs) on the IVM of porcine cumulus-oocyte complexes (COCs).

View Article and Find Full Text PDF

The aim of this study was to assess the presence and distribution of apoptosis in porcine cumulus-oocyte complexes (COCs) and its relations with COC morphology and developmental competence. The COCs were obtained from slaughterhouse ovaries, classified into A1 (top category), A2, B1, B2, C, and D based on their morphology. A1, A2, and B1 were matured and fertilized in vitro, and blastocyst rate was compared among them.

View Article and Find Full Text PDF