Reducing emissions is vital to improve sustainability, and industry leaders have set emission goals to reduce gross emissions, lower emissions intensity, or reach net zero. However, additional traits should also be measured and compared in terms of their impact on the broader definition of sustainability. In addition to environmental impact, a sustainable breeding objective must consider profit, animal welfare, farmer well-being, and social responsibility.
View Article and Find Full Text PDFReproductive performance is a key determinant of cow longevity in a pasture-based, seasonal dairy system. Unfortunately, direct fertility phenotypes such as intercalving interval or pregnancy rate tend to have low heritabilities and occur relatively late in an animal's life. In contrast, age at puberty (AGEP) is a moderately heritable, early-in-life trait that may be estimated using an animal's age at first measured elevation in blood plasma progesterone (AGEP4) concentrations.
View Article and Find Full Text PDFBackground: Many phenotypes in animal breeding are derived from incomplete measures, especially if they are challenging or expensive to measure precisely. Examples include time-dependent traits such as reproductive status, or lifespan. Incomplete measures for these traits result in phenotypes that are subject to left-, interval- and right-censoring, where phenotypes are only known to fall below an upper bound, between a lower and upper bound, or above a lower bound respectively.
View Article and Find Full Text PDFAnogenital distance (AGD) is a moderately heritable trait that can be measured at a young age that may provide an opportunity to indirectly select for improved fertility in dairy cattle. In this study, we characterized AGD and its genetic and phenotypic relationships with a range of body stature and fertility traits. We measured AGD, shoulder height, body length, and body weight in a population of 5,010 Holstein-Friesian and Holstein-Friesian × Jersey crossbred heifers at approximately 11 mo of age (AGD1).
View Article and Find Full Text PDFThis research explores possible options to reduce greenhouse gas (GHG) emissions in the Australian dairy industry by (1) including an environmental component in the national breeding program and (2) estimating the economic and environmental impacts of implementation of the subsequent indexes. A total of 12 possible selection indexes were considered. These indexes were developed to predict changes in gross per-animal methane production (using 3 scenarios depending on availability and efficacy of a direct methane trait breeding value prediction) with 4 different carbon prices, integrating them into an augmentation of the current conventional national selection index.
View Article and Find Full Text PDF