Introduction: In vitro or in vivo depletion of alloreactive T cells can facilitate haplo-identical hematopoietic stem cell transplantation (HSCT). Very satisfactory transplant outcomes were thus reported for TCRαβ/CD19-depleted hematopoietic stem/progenitor cell (HSPC) grafts. The current semi-automatic manufacturing process on the CliniMACS Plus, although robust, still requires a significant amount of manual labor to be completed.
View Article and Find Full Text PDFClinical development of chimeric antigen receptor (CAR)-T-cell therapy has been enabled by advances in synthetic biology, genetic engineering, clinical-grade manufacturing, and complex logistics to distribute the drug product to treatment sites. A key ambition of the CARAMBA project is to provide clinical proof-of-concept for virus-free CAR gene transfer using advanced Sleeping Beauty (SB) transposon technology. SB transposition in CAR-T engineering is attractive due to the high rate of stable CAR gene transfer enabled by optimized hyperactive SB100X transposase and transposon combinations, encoded by mRNA and minicircle DNA, respectively, as preferred vector embodiments.
View Article and Find Full Text PDFBackground: FVIII neutralizing antibodies are the main complication of substitution therapy in hemophilia A (HA); auto-antibodies against FVIII causing acquired HA can also occur. Treatment of inhibitor patients remains challenging because prophylactic treatment with existing FVIII bypassing agents, all based on constitutively active coagulation factors, is difficult due to their short half-life.
Objectives: To generate zymogenic FIX variants with FVIII-independent activity for gene- and protein-based therapy for HA.
J Thromb Haemost
June 2014
Background: Oral gene delivery of non-viral vectors is an attractive strategy to achieve transgene expression. Although expected efficacy from non-viral delivery systems is relatively low, repeated vector administration is possible and may help to obtain durable transgene expression in a therapeutic range.
Objectives: To test the principle feasibility of using factor (F) IX variants with improved function combined with an optimized oral delivery system in hemophilia B (HB) mice.
Therapeutic approaches using multipotent mesenchymal stromal cells (MSCs) are advancing in regenerative medicine, transplantation, and autoimmune diseases. The mechanisms behind MSC immune modulation are still poorly understood and the prediction of the immune modulatory potential of single MSC preparations remains a major challenge for possible clinical applications. Here, we highlight galectin-9 (Gal-9) as a novel, important immune modulator expressed by MSCs, which is strongly upregulated upon activation of the cells by interferon-γ (IFN-γ).
View Article and Find Full Text PDF