Lithium metal anodes generally suffer from uncontrolled dendrite growth and large volume change, while traditional skeletons such as LiIn and LiSn are too heavy and discontinuous to offer highly efficient structural supportability for composite Li anodes. In this work, lightweight and stable fiber-clustered skeletons, which are composed of LiB fibers and jointed LiSi nanoparticles, can be obtained by smelting SiB powder and Li ingots. In addition to serving as both ionic and electronic conductors for composite Li anodes, the stable skeletons reduced volumetric fluctuation by offering uniform, heterogeneous, and continuous architectures while suppressing lithium dendrites with low nucleation overpotential and diffusion energy barrier.
View Article and Find Full Text PDFFlexible solid-state supercapacitors (FSSCs) have garnered significant attention due to their advantages, including lightness, adaptability, enhanced safety, and extensive operational potential windows. These features make them highly suitable as energy storage devices for the next generation of portable and flexible electronics. The recent surge in the development and remarkable breakthroughs in novel wearable electronics have further propelled research into FSSCs.
View Article and Find Full Text PDF