In this case, the electroencephalogram (EEG) was used to guide anesthesia care for a pediatric patient with Alexander's Disease undergoing serial intrathecal injections. Previous procedures using a standard maintenance propofol dose of up to 225 µg/kg/min led to postanesthetic recovery times of over 6 hours, requiring a neurology consult for noncoherence. The EEG assisted in guiding maintenance propofol dosing to 75 µg/kg/min, decreasing postanesthetic wash-off and postanesthesia care unit (PACU) recovery time by 50%.
View Article and Find Full Text PDFCurr Opin Anaesthesiol
December 2024
Purpose Of Review: There have been significant advancements in depth of anesthesia (DoA) technology. The Anesthesia Patient Safety Foundation recently published recommendations to use a DoA monitor in specific patient populations receiving general anesthesia. However, the universal use of DoA monitoring is not yet accepted.
View Article and Find Full Text PDFModern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice.
View Article and Find Full Text PDF