The glycoside hydrolase family 3 (GH3) β-glucosidases from filamentous fungi are crucial industrial enzymes facilitating the complete degradation of lignocellulose, by converting cello-oligosaccharides and cellobiose into glucose. Understanding the diverse domain organization is essential for elucidating their biological roles and potential biotechnological applications. This research delves into the variability of domain organization within GH3 β-glucosidases.
View Article and Find Full Text PDFLaccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains.
View Article and Find Full Text PDFThe feruloyl esterase B gene () is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in induction and ferulic acid metabolism has only been partially addressed.
View Article and Find Full Text PDFIn the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level of starch granule rigidity affects resistance towards enzymatic hydrolysis, resulting in inefficient starch degradation by industrially available α-amylases.
View Article and Find Full Text PDFPost-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10-30% chitin, these yields are too low for cost-effective production.
View Article and Find Full Text PDF