Publications by authors named "P Pring-Akerblom"

An adenovirus (AdV) has been isolated from the rectal swab of a domestic cat () and named feline adenovirus (FeAdV) isolate. It replicates and causes cytopathological effects in many human, feline, other mammalian cell lines that have both Coxsackie-adenovirus-receptor and integrins. Its antigens cross-react with anti-human adenovirus antibodies in immunofluorescence and immunocytochemistry assays.

View Article and Find Full Text PDF

The penton base is a major capsid protein of human adenoviruses (HAdV) which forms the vertices of the capsid and interacts with hexon and fiber protein. Two hypervariable loops of the penton are exposed on the capsid surface. Sequences of these and 300 adjacent amino acid residues of all 51 HAdV and closely related simian adenoviruses were studied.

View Article and Find Full Text PDF

Recombinant adenoviruses are presently the most efficient in vivo gene transfer system available. Targeting single organs or large tumors by adenoviral vectors requires an intravascular route of application. During the first pass of viral particles through the vascular bed of the target tissue, virus uptake is not quantitative and indefinite amounts of particles leak into circulation.

View Article and Find Full Text PDF

Rapid diagnosis of human adenovirus (HAdV) infections was achieved by PCR in the recent years. However, conventional PCR has the risk of carry-over contamination due to open handling with its products, and results are only qualitative. Therefore, a quantitative "real-time" PCR with consensus primer and probe (dual fluorescence labelled, "TaqMan") sequences for a conserved region of the hexon gene was designed and evaluated.

View Article and Find Full Text PDF

Most adenoviruses use the coxsackie-adenovirus receptor (CAR) as a major cellular receptor. We have shown recently that adenovirus types 8, 19a, and 37, which are the major causes of epidemic keratoconjunctivitis, use sialic acid rather than CAR as a major cellular receptor. The predicted isoelectric point of the receptor-interacting knob domain in the adenovirus fiber protein is unusually high (9.

View Article and Find Full Text PDF