Despite evidence linking the gut microbiome to neuropathic pain (NP), it is not known if altering gut microbiota can alleviate NP via the microbiome-gut-brain axis. This study examined if healthy gut microbiota of sham male rats (Sham+V) and dysbiotic gut microbiota of NP rats (spinal nerve ligation: NP, SNL+V) can be disrupted and restored, respectively, via fecal microbiota transplant (FMT) from the opposite group [Sham+(SNL-FMT) and SNL+(Sham-FMT), respectively]. All groups received FMT daily for two weeks, followed by three weeks without FMT.
View Article and Find Full Text PDFNutrients
October 2024
Background: Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined.
Objective: Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model.
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model.
View Article and Find Full Text PDFPain is a clinically relevant health care issue with limited therapeutic options, creating the need for new and improved analgesic strategies. The amygdala is a limbic brain region critically involved in the regulation of emotional-affective components of pain and in pain modulation. The central nucleus of amygdala (CeA) serves major output functions and receives nociceptive information via the external lateral parabrachial nucleus (PB).
View Article and Find Full Text PDFPain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown.
View Article and Find Full Text PDF