The Peruvian grunt is one of the most appreciated fish in Peruvian national markets. However, its reduced and irregular fishery is a paradigm of illegal, unreported, and unregulated fishing (IUU) in the Peruvian-Chilean coastal region. An important technological advancement has been achieved in the last decade in capture, management, nutrition, and broodstock maintenance to boost pilot experiences on the aquaculture of this species.
View Article and Find Full Text PDFThe Peruvian grunt, , is beginning its domestication as a candidate species for marine aquaculture. The optimal management of fingerling production requires precise knowledge on early development. Herein, we report the methodology for capturing and conditioning wild specimens to find a viable broodstock.
View Article and Find Full Text PDFEgg quality in fishes is commonly determined by fertilisation success and cleavage patterns as a phenotypic outcome of underlying regulatory mechanisms. Although these phenotypic estimators of egg quality are useful in farming conditions, these "good quality" egg batches do not always translate to good larval growth and survival. The identification of genes involved in embryonic development may help find links between genetic factors of maternal origin and egg quality.
View Article and Find Full Text PDFEgg specific gravity is of relevance for fish recruitment since the ability to float influences egg and larvae development, dispersal and connectivity between fishing grounds. Using zootechnics, histological approaches, optical and electronic transmission microscopy, this study describes the morphogenetic mechanism of adhesion of the oil-drop covering layer (OCL) to the oil droplet (OD) in embryos of Merluccius merluccius under physical conditions reflecting the marine environment. The herein described primordial (p)OCL is a substructure of the inner yolk syncytial layer which contains egg organella aimed to mobilize lipidic reserves from the oil drop (OD) towards the embryo blood.
View Article and Find Full Text PDFMagnetic nanoparticles, such as magnetite (FeO), exhibit superparamagnetic properties below 15 nm at room temperature. They are being explored for medical applications, and the coprecipitation technique is preferred for cost-effective production. This study investigates the impact of synthesis temperature on the nanoparticles' physicochemical characteristics.
View Article and Find Full Text PDF