Publications by authors named "P Porebski"

Sodium lauryl sulfate (SLS) is used as a control irritant in patch testing for allergic contact dermatitis (ACD). However, up to 20% of those tested react to SLS, whereby the pathophysiological basis of this reaction is still unclear. To mimic patch test reactions, we repeatedly applied SLS to the skin of wild-type mice.

View Article and Find Full Text PDF

We present MacKenzie, a HPC-driven multi-cluster workflow system that was used repeatedly to configure and execute fine-grained US national-scale epidemic simulation models during the COVID-19 pandemic. Mackenzie supported federal and Virginia policymakers, in real-time, for a large number of "what-if" scenarios during the COVID-19 pandemic, and continues to be used to answer related questions as COVID-19 transitions to the endemic stage of the disease. MacKenzie is a novel HPC meta-scheduler that can execute US-scale simulation models and associated workflows that typically present significant big data challenges.

View Article and Find Full Text PDF

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org).

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is still a major public health issue in the U.S., with projected hospitalizations and deaths over the next two years varying based on assumptions about immune escape and vaccine recommendations.
  • Researchers used modeling to create six different scenarios combining levels of immune escape (20% and 50% per year) and CDC vaccination recommendations for different age groups.
  • In the worst-case scenario (high immune escape and no vaccination), COVID-19 could lead to over 2.1 million hospitalizations and around 209,000 deaths, while targeted vaccinations for seniors could significantly reduce these numbers.
View Article and Find Full Text PDF

Scenario-based modeling frameworks have been widely used to support policy-making at state and federal levels in the United States during the COVID-19 response. While custom-built models can be used to support one-off studies, sustained updates to projections under changing pandemic conditions requires a robust, integrated, and adaptive framework. In this paper, we describe one such framework, UVA-adaptive, that was built to support the CDC-aligned Scenario Modeling Hub (SMH) across multiple rounds, as well as weekly/biweekly projections to Virginia Department of Health (VDH) and US Department of Defense during the COVID-19 response.

View Article and Find Full Text PDF