In B-cell malignancies, the overexpression of MYC is associated with poor prognosis, but its mechanism underlying resistance to immunochemotherapy remains less clear. In further investigations of this issue, we show here that the pharmacological inhibition of MYC in various lymphoma and multiple myeloma cell lines, as well as patient-derived primary tumor cells, enhances their susceptibility to NK cell-mediated cytotoxicity induced by conventional antibodies targeting CD20 (rituximab) and CD38 (daratumumab), as well as T cell-mediated cytotoxicity induced by the CD19-targeting bispecific T-cell engager blinatumomab. This was associated with upregulation of the target antigen only for rituximab, suggesting additional escape mechanisms.
View Article and Find Full Text PDFIntroduction: Acute promyelocytic leukemia (APL) is characterized by the gene fusion and treatment consists of all-trans retinoic acid (ATRA). Rarely, genetic APL variants have been described which are insensitive to ATRA treatment and are therefore associated with a worse prognosis. Rapid identification of the APL variant is essential to start the correct treatment.
View Article and Find Full Text PDFLarge-scale chromosomal deletions are a prevalent and defining feature of cancer. A high degree of tumor-type and subtype specific recurrencies suggest a selective oncogenic advantage. However, due to their large size it has been difficult to pinpoint the oncogenic drivers that confer this advantage.
View Article and Find Full Text PDFIn myelodysplastic syndromes (MDS) the immune system is involved in pathogenesis as well as in disease progression. Dendritic cells (DC) are key players of the immune system by serving as regulators of immune responses. Their function has been scarcely studied in MDS and most of the reported studies didn't investigate naturally occurring DC subsets.
View Article and Find Full Text PDFGermline mutations in the Folliculin () tumor suppressor gene cause Birt-Hogg-Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. is a conserved, essential gene linked to diverse cellular processes but the mechanism by which prevents kidney cancer remains unknown. Here, we show that disrupting in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity.
View Article and Find Full Text PDF