The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2024
A two port surface acoustic wave (SAW) device was developed to be used for the control and excitation via spin waves (SW). The structure was manufactured using advanced nanolithography techniques, on GaN/Si, enabling fundamental Rayleigh interdigitated transducer (IDT) resonances in GHz frequency range. The ferromagnetic resonance of the magnetostrictive Ni/NiFeSi layer placed between the IDTs of the SAW device can be tuned to the SAW resonance frequency by magnetic fields.
View Article and Find Full Text PDFBistability, a universal phenomenon found in diverse fields such as biology, chemistry, and physics, describes a scenario in which a system has two stable equilibrium states and resets to one of the two states. The ability to switch between these two states is the basis for a wide range of applications, particularly in memory and logic operations. Here, we present a universal approach to achieve bistable switching in magnonics, the field processing data using spin waves.
View Article and Find Full Text PDFThe remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the magnitude of demagnetization-the so-called quenching-affects the coherency and the phase of the excited spin waves.
View Article and Find Full Text PDFBackground: Neutrophil-lymphocyte ratio (NLR) is a noninvasive, inexpensive, and easily applicable marker of inflammation. Since immune dysregulation leading to inflammation is regarded as a hallmark of dementia, in particular Alzheimer's disease (AD), we decided to investigate the potentials of NLR as a diagnostic and predictive biomarker in this clinical setting.
Materials And Methods: NLR was measured in the blood of patients with AD ( = 103), amnestic type mild cognitive impairment (aMCI, = 212), vascular dementia (VAD, = 34), and cognitively healthy Controls ( = 61).