Publications by authors named "P Piller"

Metal ions are well-known cofactors of protein function and stability. In the case of the integral membrane enzyme OmpLA (outer membrane phospholipase A) the active dimer is stabilized by calcium ions. We studied the lipid hydrolysis kinetics of OmpLA in charge-neutral and charged membranes with symmetric or asymmetric transbilayer lipid distributions.

View Article and Find Full Text PDF

The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets.

View Article and Find Full Text PDF

We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets.

View Article and Find Full Text PDF

Detergents are valuable tools to extract membrane proteins for biophysical, biochemical, and structural scrutiny. The detergent-driven solubilization of bilayers made from a single lipid species is commonly described in terms of pseudo-phase diagrams and a three-stage model accounting for three ranges comprising (i) intact vesicles, (ii) vesicle/micelle co-existence, or (iii) mixed micelles. Moreover, the pseudo-phase boundaries thus determined can often be quantitatively rationalized in terms of the molecular shapes of the lipid and the detergent used.

View Article and Find Full Text PDF

The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance.

View Article and Find Full Text PDF