Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system.
View Article and Find Full Text PDFP2X7, a ligand-gated purinergic ion channel, has been at the center of intense efforts in the pharmaceutical industry in the last 15 years due to the growing appreciation of its role in inflammation. Since 2008-2009, increased focus on CNS available compounds has led to the publication of various patents on behalf of several pharmaceutical companies. This patent review aims at analyzing the recent patent literature (2008-2016) with a particular emphasis on those patents that are thought to deal with CNS penetrant compounds on the basis of their physicochemical features, the assays described in the patents and the uses these compounds are claimed for.
View Article and Find Full Text PDFFFA4/GPR120, a member of the rhodopsin family of G-protein-coupled receptors (GPCRs), is becoming an important target for therapeutic intervention in several areas of disease, including metabolic diseases, inflammation and cancer. In the last few years several patents on original chemotypes have been generated by different companies. In this review an analysis of the patents in the FFA4 agonism field is presented, with an emphasis on the documents published between 2013 and mid-2015.
View Article and Find Full Text PDFCa(2+) release-activated Ca(2+) (CRAC) channels are becoming important targets for therapeutic intervention in several areas of disease, including immunology, allergy and cancer. In parallel to the progression towards reliable methods for measuring CRAC currents and their inhibition, patents have been generated by several companies. In this Patent Review, an analysis of the patents in the CRAC channel inhibition filed is presented.
View Article and Find Full Text PDFA new chemical series, triazolo[4,5-b]pyridines, has been identified as an inhibitor of PIM-1 by a chemotype hopping strategy based on a chemically feasible fragment database. In this case, structure-based virtual screening and in silico chemogenomics provide added value to the previously reported strategy of prioritizing among proposed novel scaffolds. Pairwise comparison between compound 3, recently discontinued from Phase I clinical trials, and molecule 8, bearing the selected novel scaffold, shows that the primary activities are similar (IC(50) in the 20 to 150 nM range).
View Article and Find Full Text PDF