Publications by authors named "P Petersson"

Article Synopsis
  • The study characterized plasma parameters and neutral particle energies in a Toroidal Magnetized System (TOMAS) using a movable triple Langmuir probe and a time-of-flight neutral particle analyzer.
  • The focus was on measuring electron densities, temperatures, and the energies and fluxes of neutral particles under varying total injected power and antenna frequencies.
  • The findings aim to enhance understanding of neutral particle behavior in low-energy wall conditioning plasmas.
View Article and Find Full Text PDF

Background: The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions.

View Article and Find Full Text PDF

To date, the most commonly used column characterization databases do not determine the relative positive charge associated with new generation RP columns, or they fail to successfully discriminate between RP columns of purportedly low level positive and neutral characters. This paper rectifies this in that it describes a convenient and robust chromatographic procedure for the assessment of the low levels of positive charge on a range of RP columns. The low degree of positive charge was determined by their electrostatic attraction towards the negatively charged 4-n-octylbenzene sulfonic acid (4-OBSA) relative to their retention of the hydrophobic marker toluene (Tol).

View Article and Find Full Text PDF

Psychosis in Parkinson's disease is a common phenomenon associated with poor outcomes. To clarify the pathophysiology of this condition and the mechanisms of antipsychotic treatments, we have here characterized the neurophysiological brain states induced by clozapine, pimavanserin, and the novel prospective antipsychotic mesdopetam in a rodent model of Parkinson's disease psychosis, based on chronic dopaminergic denervation by 6-OHDA lesions, levodopa priming, and the acute administration of an NMDA antagonist. Parallel recordings of local field potentials from eleven cortical and sub-cortical regions revealed shared neurophysiological treatment effects for the three compounds, despite their different pharmacological profiles, involving reversal of features associated with the psychotomimetic state, such as a reduction of aberrant high-frequency oscillations in prefrontal structures together with a decrease of abnormal synchronization between different brain regions.

View Article and Find Full Text PDF

The profound changes in perception and cognition induced by psychedelic drugs are thought to act on several levels, including increased glutamatergic activity, altered functional connectivity and an aberrant increase in high-frequency oscillations. To bridge these different levels of observation, we have here performed large-scale multi-structure recordings in freely behaving rats treated with 5-HT2AR psychedelics (LSD, DOI) and NMDAR psychedelics (ketamine, PCP). While interneurons and principal cells showed disparate firing rate modulations for the two classes of psychedelics, the local field potentials revealed a shared pattern of synchronized high-frequency oscillations in the ventral striatum and several cortical areas.

View Article and Find Full Text PDF