Introduction: Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays.
Methods: Aliquots from 81 plasma samples were distributed to 10 participating centers.
Introduction: We studied usefulness of combining blood amyloid beta (Aβ)42/Aβ40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aβ deposition in different stages of early Alzheimer's disease (AD).
Methods: Plasma biomarkers were measured using mass spectrometry (Aβ42/Aβ40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2).
Results: In CU, a combination of plasma Aβ42/Aβ40 and p-tau217 detected abnormal brain Aβ status with area under the curve (AUC) of 0.
We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer's disease (AD) dementia.
View Article and Find Full Text PDFPlasma amyloid-β peptide concentration has recently been shown to have high accuracy to predict amyloid-β plaque burden in the brain. These amyloid-β plasma markers will allow wider screening of the population and simplify and reduce screening costs for therapeutic trials in Alzheimer's disease. The aim of this study was to determine how longitudinal changes in blood amyloid-β track with changes in brain amyloid-β.
View Article and Find Full Text PDF