It is of particular interest for biopharmaceutical companies developing and distributing fragile biomolecules to warrant the stability and activity of their products during long-term storage and shipment. In accordance with quality by design principles, advanced kinetic modeling (AKM) has been successfully used to predict long-term product shelf-life and relies on data from short-term accelerated stability studies that are used to generate Arrhenius-based kinetic models that can, in turn, be exploited for stability forecasts. The AKM methodology was evaluated through a cross-company perspective on stability modeling for key stability indicating attributes of different types of biotherapeutics, vaccines and biomolecules combined in in vitro diagnostic kits.
View Article and Find Full Text PDFThe global concern about the gap between food production and consumption has intensified the research on the genetics, ecophysiology, and breeding of cereal crops. In this sense, several genetic studies have been conducted to assess the effectiveness and sustainability of collections of germplasm accessions of major crops. In this study, a spectral-based classification approach for the assignment of wheat cultivars to genetically differentiated subpopulations (genetic structure) was carried out using a panel of 316 spring bread cultivars grown in two environments with different water regimes (rainfed and fully irrigated).
View Article and Find Full Text PDFPlants produce a wide diversity of specialized metabolites, which fulfill a wide range of biological functions, helping plants to interact with biotic and abiotic factors. In this study, an integrated approach based on high-throughput plant phenotyping, genome-wide haplotypes, and pedigree information was performed to examine the extent of heritable variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in a genetically structured population of a cyanogenic eucalyptus ( F. Muell).
View Article and Find Full Text PDFForest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS).
View Article and Find Full Text PDFNatural variation of cyanogenic glycosides, soluble sugars, proline, and nondestructive optical sensing of pigments (chlorophyll, flavonols, and anthocyanins) was examined in ex situ natural populations of Eucalyptus cladocalyx F. Muell. grown under dry environmental conditions in the southern Atacama Desert, Chile.
View Article and Find Full Text PDF