Purpose: Dose, fractionation, normalization and the dose profile inside the target volume vary substantially in pulmonary stereotactic body radiotherapy (SBRT) between different institutions and SBRT technologies. Published planning studies have shown large variations of the mean dose in planning target volume (PTV) and gross tumor volume (GTV) or internal target volume (ITV) when dose prescription is performed to the PTV covering isodose. This planning study investigated whether dose prescription to the mean dose of the ITV improves consistency in pulmonary SBRT dose distributions.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
July 2007
Purpose: To estimate secondary cancer risk due to dose escalation in patients treated for prostatic carcinoma with three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated RT (IMRT), and spot-scanned proton RT.
Methods And Materials: The organ equivalent dose (OED) concept with a linear-exponential, a plateau, and a linear dose-response curve was applied to dose distributions of 23 patients who received RT of prostate cancer. Conformal RT was used in 7 patients, 8 patients received IMRT with 6- and 15-MV photons, and 8 patients were treated with spot-scanned protons.
A commercial electron beam treatment planning system on the basis of a Monte Carlo algorithm (Varian Eclipse, eMC V7.2.35) was evaluated.
View Article and Find Full Text PDFStrahlenther Onkol
November 2006
Background And Purpose: There is concern about the increase of radiation-induced malignancies with the application of modern radiation treatment techniques such as intensity-modulated radiotherapy (IMRT) and proton radiotherapy. Therefore, X-ray scatter and neutron radiation as well as the impact of the primary dose distribution on secondary cancer incidence are analyzed.
Material And Methods: The organ equivalent dose (OED) concept with a linear-exponential and a plateau dose-response curve was applied to dose distributions of 30 patients who received radiation therapy of prostate cancer.
The purpose of this work is to show the feasibility of using in vivo proton radiography of a radiotherapy patient for the patient individual optimization of the calibration from CT-Hounsfield units to relative proton stopping power. Water equivalent tissue (WET) calibrated proton radiographs of a dog patient treated for a nasal tumor were used as baseline in comparison with integrated proton stopping power through the calibrated CT of the dog. In an optimization procedure starting with a stoichiometric calibration curve, the calibration was modified randomly.
View Article and Find Full Text PDF