COVID-19 disproportionately affected minorities, while research barriers to engage underserved communities persist. Serological studies reveal infection and vaccination histories within these communities, however lack of consensus on downstream evaluation methods impede meta-analyses and dampen the broader public health impact. To reveal the impact of COVID-19 and vaccine uptake among diverse communities and to develop rigorous serological downstream evaluation methods, we engaged racial and ethnic minorities in Massachusetts in a cross-sectional study (April - July 2022), screened blood and saliva for SARS-CoV-2 and human endemic coronavirus (hCoV) antibodies by bead-based multiplex assay and point-of-care (POC) test and developed across-plate normalization and classification boundary methods for optimal qualitative serological assessments.
View Article and Find Full Text PDFSignals analysis for cytometry remains a challenging task that has a significant impact on uncertainty. Conventional cytometers assume that individual measurements are well characterized by simple properties such as the signal area, width, and height. However, these approaches have difficulty distinguishing inherent biological variability from instrument artifacts and operating conditions.
View Article and Find Full Text PDFCOVID-19 has highlighted challenges in the measurement quality and comparability of serological binding and neutralization assays. Due to many different assay formats and reagents, these measurements are known to be highly variable with large uncertainties. The development of the WHO international standard (WHO IS) and other pool standards have facilitated assay comparability through normalization to a common material but does not provide assay harmonization nor uncertainty quantification.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the importance and challenges of correctly interpreting antibody test results. Identification of positive and negative samples requires a classification strategy with low error rates, which is hard to achieve when the corresponding measurement values overlap. Additional uncertainty arises when classification schemes fail to account for complicated structure in data.
View Article and Find Full Text PDF