Ommatins, natural colorants found in cephalopods and arthropods, are biosynthesized from tryptophan with uncyclized xanthommatin (Uc-Xa) as the key biosynthetic precursor. These pigments change color under oxidative or reductive conditions. Xanthommatin (Xa) and dihydro-xanthommatin (H-Xa), as well as decarboxylated xanthommatin (Dc-Xa) and decarboxylated-dihydro-xanthommatin (Dc-H-Xa), are some of the most common and well-studied ommatins.
View Article and Find Full Text PDFThe increase in research funding for the development of antimalarials since 2000 has led to a surge of new chemotypes with potent antimalarial activity. High-throughput screens have delivered several thousand new active compounds in several hundred series, including the 4,7-diphenyl-1,4,5,6,7,8-hexahydroquinolines, hereafter termed dihydropyridines (DHPs). We optimized the DHPs for antimalarial activity.
View Article and Find Full Text PDFMalaria infections affect almost half of the world's population, with over 200 million cases reported annually. Cryptolepis sanguinolenta, a plant native to West Africa, has long been used across various regions of Africa for malaria treatment. Chemical analysis has revealed that the plant is abundant in indoloquinolines, which have been shown to possess antimalarial properties.
View Article and Find Full Text PDFThe quest for effective technologies to reduce SO pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO from CO-containing waste gas is a persistent challenge, and current technologies suffer from low SO/CO selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO from CO-containing streams.
View Article and Find Full Text PDF