Publications by authors named "P Pansri"

Aims: Diarrhoea is a common health problem in calves and a main reason for use of antimicrobials. It is associated with several bacterial, viral and parasitic pathogens, most of which are commonly present in healthy animals. Methods, which quantify the causative agents, may therefore improve confidence in associating a pathogen to the disease.

View Article and Find Full Text PDF

Bovine respiratory disease (BRD) is caused by a mixture of viruses and opportunistic bacteria belonging to Pasteurellaceae and Mycoplasma bovis. However, these organisms are also commonly isolated from healthy calves. This study aimed to determine whether the organisms are present in higher numbers in calves sick with acute BRD than in clinically healthy calves, and further to genetically characterize bacteria of the family Pasteurellaceae to understand whether particular types are associated with disease.

View Article and Find Full Text PDF

Background: Several pieces of evidence from in vitro studies showed that brain-derived neurotrophic factor (BDNF) promotes proliferation and differentiation of neural stem/progenitor cells (NSCs) into neurons. Moreover, the JAK2 pathway was proposed to be associated with mouse NSC proliferation. BDNF could activate the STAT-3 pathway and induce proliferation in mouse NSCs.

View Article and Find Full Text PDF

Bovine respiratory disease complex is the most common disease requiring the use of antimicrobials in industrial calf production worldwide. Pathogenic bacteria (Mannheimia haemolytica (Mh), Pasteurella multocida (Pm), Histophilus somni (Hs), and Mycoplasma bovis) and a range of viruses (bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine viral diarrhea virus and bovine herpesvirus type 1) are associated with this complex. As most of these pathogens can be present in healthy and diseased calves, simple detection of their presence in diseased calves carries low predictive value.

View Article and Find Full Text PDF

A unique human phage display library was used to successfully generate a scFv to the highly carcinogenic toxin aflatoxin B1. Such an antibody has major potential applications in therapy and diagnostics. To further exploit its analytical capacity, the scFv was genetically fused to alkaline phosphatase, thereby generating a novel and highly sensitive self-indicating reagent.

View Article and Find Full Text PDF